Polish J. Chem., 75, 457–460 (2001)

Interaction of Components in the Ni–Zn–Si System at 570 K

by I.V. Chumak¹, V.V. Pavlyuk^{1,2}, J. Kapuśniak², W. Ciesielski² and J. Kozioł²

¹Department of Inorganic Chemistry, Ivan Franko L'viv National University, Kyryla and Mefodiya str. 6, UA-79005 Lviv, Ukraine e-mail:pavl@chem.franko.lviv.ua ²Institute of Chemistry, Pedagogical University of Częstochowa 42200 Częstochowa, Poland

(Received September 26th, 2000; revised manuscript November 13th, 2000)

The interaction of nickel with zinc and silicon over the whole range of concentrations has not yet been studied. The Ni–Zn–Si system was investigated early at 1070 K [1]. Three ternary compounds: Ni₂ZnSi, Ni₂Zn₃Si and Ni₃ZnSi₂ exist at this temperature. Phase diagrams of the binary systems Ni–Zn and Ni–Si have been accepted as given in [2]. Crystallographic characteristics for the binary compounds of the Ni–Zn and Ni–Si systems according to [3] are listed in Table 1.

Results of investigation of the isothermal section of Ni–Zn–Si system at 570 K are presented in this paper. Isothermal section of the phase diagram of Ni–Zn–Si system has been constructed by X-ray phase analysis of 56 alloys. Purity of the elements were: nickel 99.99 wt.%, zinc 99.9 wt.% and silicon 99.999 wt.%. The samples were arc melted in an argon atmosphere and then annealed at 570 K for 400 h. X-ray powder diffraction were obtained using a DRON-2.0 powder diffractometer with FeK_{α}-radiation and powder diffractometer DRON-3M (CuK_{α}-radiation, 0.05° step of scanning, 20–30 sec./one point speed of scanning). Indexing of the diffractograms was made by using the program TREOR-90. The cell constants were refined using the program DBW-3.2S [4]. A differential scanning calorimeter (DSC) "Netzsch STA 409" was used for the determination of the melting temperatures of the synthesized phases and for detecting possible phase transition.

Compound	Str. type	Space group	a, nm	b, nm	c, nm	
NiZn	In	I4/mmm	0.27468		0.31783	
NiZn	CsCl	Pm3m	0.29143			
$NiZn(\beta_1)$	AuCu	P4/mmm	0.3885		0.2965	
NiZn ₃	NiZn ₃	Abm2	3.3326	1.2499	0.8869	
Ni_2Zn_{11}	Cu ₅ Zn ₈	I 4 3m	0.89228			
Ni ₃ Zn ₂₂	Ni ₃ Zn ₂₂	C2/m	1.337	0.747	0.765	
				$\beta = 113.3^{\circ}$		

Table 1. Crystallographic parameters for the binary compounds of the Ni–Zn and Ni–Si Systems [3].

Table 1 (continuation)						
NiSi	MnP	Pnma	0.518	0.334	0.562	
NiSi	FeSi	P2 ₁ 3	0.4446			
NiSi ₂	CaF_2	Fm3m	0.5406			
Ni ₂ Si	Ni ₂ Si	P6 ₃ /m	0.3805		0.4890	
Ni ₂ Si	Co ₂ Si	Pnma	0.500	0.373	0.704	
Ni ₃ Si	AuCu ₃	$Pm \overline{3}m$	0.3504			
Ni ₃ Si	CsCl	Pm 3m	0.2808			
Ni ₃ Si	Cu	Fm 3m	0.35826			
Ni ₃ Si ₂	Ni ₃ Si ₂	$Cmc2_1$	1.2229	1.0805	0.6924	
Ni ₃₁ Si ₁₂	$Ni_{31}Si_{12}$	P321	0.6671		1.2288	

The phase diagram of the Ni–Zn–Si ternary system at 570 K is shown in Figure 1. The existence of Ni₂ZnSi, Ni₂Zn₃Si and Ni₃ZnSi₂ compounds was confirmed at 570 K. A new ternary compound Ni₃Zn_{0.33}Si_{0.67} was found at this temperature. Crystallographic characteristics of the ternary compounds are listed in Table 2. Compound Ni₃Zn_{0.33}Si_{0.67} crystallizes in structure type Al₃Ti. Atoms Zn and Si are statistically arranged in positions 2b. The atomic parameters for the Ni₃Zn_{0.33}Si_{0.67} were refined to R = 0.024 and the corresponding values are listed in Table 3. It was found that the binary NiSi and Ni₃Si phases exhibit small solid solution ranges (< 10% Zn) in the Ni–Zn–Si system. Thermal analysis of the Ni_{0.8}Zn_{0.2}Si alloy was carried out (Fig. 2). Deviations between values of melting temperature of NiSi [2] compound and the alloy from solid solution of Zn in the NiSi was observed (Table 4). The peak corresponded to the eutectic transformation L \Leftrightarrow NiSi + α NiSi₂, being a result of shifting composition from NiSi to the field between NiSi and NiSi₂ (Table 4). No polymorphic transformations are observed for NiSi compound, contrary to [3], where the existence of two modifications of this compound was indicated. The existence of the NiSi com-

Figure 1. Isothermal section of the Ni–Zn–Si system at 570 K.

Figure 2. Heating and cooling curves for the Ni_{0.8}Zn_{0.2}Si alloy (1 – heating curve, 2 – cooling curve).

pound with FeSi structure type was not confirmed by us. Solubility of Zn in the NiSi binary compound is the reason for temperature decreases of eutectic and congruent transformations.

Table 2. Crystallographic characteristics of the ternary compounds of the Ni–Zr
--

	1		1	•	
Compounds	Structure type	Space group	a, nm	c, nm	References
Ni ₂ ZnSi	BiF ₃	Fm 3m	0.569		3
Ni ₂ Zn ₃ Si	Ti ₂ Ni	Fd 3m	1.0718		3
Ni ₃ ZnSi ₂	FeSi	P2 ₁ 3	0.4535		3
Ni ₃ Zn _{0.33} Si _{0.67}	Al ₃ Ti	I4/mmm	0.35072(6)	0.7065(3)	authors data

Table 3. The atomi	c parameters	of Ni ₃ Zn _{0.33} Si _{0.67} .
--------------------	--------------	--

Atom	x/a	y/b	z/c	B_i
(Zn+Si)	0	0	1/2	1.8
Ni1	0	0	0	1.2
Ni2	0	1/2	1/4	1.9

Table 4. Temperatures of some special points.

Reaction	Reaction type	Temperature, °C	
		NiSi ([2])	Ni _{0.8} Zn _{0.2} Si (exp)
L ⇔ NiSi	Congruent	992	932.6
$L \Leftrightarrow NiSi + \alpha NiSi_2$	Eutectic	966	910.0

REFERENCES

- 1. Stadelmaier H.H. and Brett J.M., Z. Metallkd., 59, 11 (1968).
- 2. Massalski T.B., Binary Alloys Phase diagrams, Am. Soc. Met., 1986. V. 1-2, 2223 p.
- 3. Villars P. and Calvert L.D., Person's Handbook of Crystallography Data for Intermetallic Phases, Am. Soc. Met., 1983. V. 1–3, 3258 p.
- 4. Wiles D.B., Sakthivel A. and Young R.A., Program DBW3.2S for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, Atlanta, Georgia, Institute of Technology, 1988, 11 p.